| `\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown` |
$$ \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown$$ |
| `\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge` |
$$\ \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge$$ |
| `\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes` |
$$ \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes$$ |
| `\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant` |
$$ \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant$$ |
| `\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq` |
$$ \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq$$ |
| `\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft` |
$$ \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft$$ |
| `\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot` |
$$ \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot$$ |
| `\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq` |
$$ \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq$$ |
| `\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork` |
$$ \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork$$ |
| `\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq` |
$$ \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq$$ |
| `\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid` |
$$ \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid$$ |
| `\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr` |
$$ \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr$$ |
| `\subsetneq` |
$$\subsetneq$$ |
| `\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq` |
$$ \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq$$ |
| `\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq` |
$$ \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq$$ |
| `\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq` |
$$ \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq$$ |
| `\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus` |
$$\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!$$ |
| `\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq` |
$$\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!$$ |
| `\dashv \asymp \doteq \parallel` |
$$\dashv \asymp \doteq \parallel\,\!$$ |
| `\ulcorner \urcorner \llcorner \lrcorner` |
$$\ulcorner \urcorner \llcorner \lrcorner$$ |
| Feature |
Syntax |
How it looks rendered |
| Parentheses |
`\left ( \frac{a}{b} \right )` |
$$\left ( \frac{a}{b} \right )$$ |
| Brackets |
`\left \frac{a}{b} \right \quad \left \lbrack \frac{a}{b} \right \rbrack` |
$$\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack$$ |
| Braces |
`\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace` |
$$\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace$$ |
| Angle brackets |
`\left \langle \frac{a}{b} \right \rangle` |
$$\left \langle \frac{a}{b} \right \rangle$$ |
| Bars and double bars |
`\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|` |
$$\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|$$ |
| Floor and ceiling functions: |
`\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil` |
$$\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil$$ |
| Slashes and backslashes |
`\left / \frac{a}{b} \right \backslash` |
$$\left / \frac{a}{b} \right \backslash$$ |
| Up, down and up-down arrows |
`\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow` |
$$\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow$$ |
Delimiters can be mixed, as long as \left and \right match |
`\left |
`\left . \frac{A}{B} \right \} \to X` |
$$\left . \frac{A}{B} \right \} \to X$$ |
| Size of the delimiters |
`\big( \Big( \bigg( \Bigg( \dots \Bigg \bigg] \Big] \big]/` |
$$\big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]$$ |
| . |
`\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle` |
$$\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle$$ |
| . |
`\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big|` |
$$\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big|$$ |
| . |
`\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil` |
$$\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil$$ |
| . |
`\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow` |
$$\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow$$ |
| . |
`\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow` |
$$\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow$$ |
| . |
`\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash` |
$$\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash$$ |
Texvc cannot render arbitrary Unicode characters. Those it can handle can be entered by the expressions below. For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas.
| Greek alphabet |
| `\Alpha \Beta \Gamma \Delta \Epsilon \Zeta` |
$$\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!$$ |
| `\Eta \Theta \Iota \Kappa \Lambda \Mu` |
$$\Eta \Theta \Iota \Kappa \Lambda \Mu \,\!$$ |
| `\Nu \Xi \Pi \Rho \Sigma \Tau` |
$$\Nu \Xi \Pi \Rho \Sigma \Tau\,\!$$ |
| `\Upsilon \Phi \Chi \Psi \Omega` |
$$\Upsilon \Phi \Chi \Psi \Omega \,\!$$ |
| `\alpha \beta \gamma \delta \epsilon \zeta` |
$$\alpha \beta \gamma \delta \epsilon \zeta \,\!$$ |
| `\eta \theta \iota \kappa \lambda \mu` |
$$\eta \theta \iota \kappa \lambda \mu \,\!$$ |
| `\nu \xi \pi \rho \sigma \tau` |
$$\nu \xi \pi \rho \sigma \tau \,\!$$ |
| `\upsilon \phi \chi \psi \omega` |
$$\upsilon \phi \chi \psi \omega \,\!$$ |
| `\varepsilon \digamma \vartheta \varkappa` |
$$\varepsilon \digamma \vartheta \varkappa \,\!$$ |
| `\varpi \varrho \varsigma \varphi` |
$$\varpi \varrho \varsigma \varphi\,\!$$ |
| Blackboard Bold/Scripts |
| `\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}` |
$$\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!$$ |
| `\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M}` |
$$\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!$$ |
| `\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T}` |
$$\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!$$ |
| `\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}` |
$$\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!$$ |
| boldface (vectors) |
| `\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G}` |
$$\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!$$ |
| `\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M}` |
$$\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!$$ |
| `\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T}` |
$$\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!$$ |
| `\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}` |
$$\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!$$ |
| `\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g}` |
$$\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!$$ |
| `\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m}` |
$$\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!$$ |
| `\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t}` |
$$\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!$$ |
| `\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}` |
$$\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!$$ |
| `\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4}` |
$$\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!$$ |
| `\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}` |
$$\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!$$ |
| Boldface (greek) |
| `\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}` |
$$\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!$$ |
| `\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}` |
$$\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!$$ |
| `\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}` |
$$\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!$$ |
| `\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}` |
$$\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!$$ |
| `\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}` |
$$\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!$$ |
| `\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}` |
$$\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!$$ |
| `\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}` |
$$\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!$$ |
| `\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}` |
$$\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!$$ |
| `\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}` |
$$\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!$$ |
| `\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}` |
$$\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!$$ |
| Italics |
| `\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G}` |
$$\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!$$ |
| `\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M}` |
$$\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!$$ |
| `\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T}` |
$$\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!$$ |
| `\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z}` |
$$\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!$$ |
| `\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g}` |
$$\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!$$ |
| `\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m}` |
$$\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!$$ |
| `\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t}` |
$$\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!$$ |
| `\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z}` |
$$\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!$$ |
| `\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4}` |
$$\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!$$ |
| `\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}` |
$$\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!$$ |
| Roman typeface |
| `\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G}` |
$$\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!$$ |
| `\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M}` |
$$\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!$$ |
| `\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T}` |
$$\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!$$ |
| `\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}` |
$$\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!$$ |
| `\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}` |
$$\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!$$ |
| `\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m}` |
$$\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!$$ |
| `\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t}` |
$$\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!$$ |
| `\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}` |
$$\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!$$ |
| `\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4}` |
$$\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!$$ |
| `\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}` |
$$\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!$$ |
| Fraktur typeface |
| `\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G}` |
$$\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!$$ |
| `\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M}` |
$$\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!$$ |
| `\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T}` |
$$\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!$$ |
| `\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}` |
$$\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!$$ |
| `\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g}` |
$$\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!$$ |
| `\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m}` |
$$\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!$$ |
| `\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t}` |
$$\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!$$ |
| `\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}` |
$$\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!$$ |
| `\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4}` |
$$\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!$$ |
| `\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}` |
$$\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!$$ |
| Calligraphy/Script |
| `\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G}` |
$$\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!$$ |
| `\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M}` |
$$\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!$$ |
| `\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T}` |
$$\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!$$ |
| `\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}` |
$$\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!$$ |
| Hebrew |
| `\aleph \beth \gimel \daleth` |
$$\aleph \beth \gimel \daleth\,\!$$ |
Note that TeX handles most spacing automatically, but you may sometimes want manual control.